Existence of Weak Solutions for a Non-classical Sharp Interface Model for a Two-phase Flow of Viscous, Incompressible Fluids
نویسندگان
چکیده
Abstract. We introduce a new sharp interface model for the flow of two immiscible, viscous, incompressible fluids. In contrast to classical models for two-phase flows we prescribe an evolution law for the interfaces that takes diffusional effects into account. This leads to a coupled system of Navier–Stokes and Mullins–Sekerka type parts that coincides with the asymptotic limit of a diffuse interface model. We prove the long-time existence of weak solutions, which is an open problem for the classical two-phase model. We show that the phase interfaces have in almost all points a generalized mean curvature.
منابع مشابه
Existence of Weak solutions for a Diffuse Interface Model for Viscous, Incompressible Fluids with General Densities
We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. In contrast to previous works, we study the general case that the fluids have differen...
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کاملExistence of solutions to a two–dimensional model for nonisothermal two–phase flows of incompressible fluids
We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [12] where existence of weak solutions was proved in three space dimensions. Here, we aim at studying the properties of solutions in the two-dimensional case. In particular, we can show existence of global in tim...
متن کاملTraveling Waves of Some Symmetric Planar Flows of Non-Newtonian Fluids
We present some variants of Burgers-type equations for incompressible and isothermal planar flow of viscous non-Newtonian fluids based on the Cross, the Carreau and the power-law rheology models, and on a symmetry assumption on the flow. We numerically solve the associated traveling wave equations by using industrial data and in order to validate the models we prove existence and uniqueness of ...
متن کاملA Hele-Shaw-Cahn-Hilliard model for incompressible two-phase flows with different densities
Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn–Hilliard–Navier–Stokes model introduced by Abels, Garcke and Grün (Math. Models Methods Appl. Sci. 2012), which uses a volume averaged velocity, we derive a diffuse interface mo...
متن کامل